

# Computation EXUS

Powering AI & Blockchain Ecosystems with Tokenized Incentives

Version 1.0





### Preface

As humanity accelerates towards an intelligent future, Al's hunger for computing power, blockchain's collaborative barriers, and the gap in the commercialization of scientific research results are becoming a triple shackle that restricts the development of breakthrough technologies.

We've witnessed countless world-changing technological prototypes wither in ecological silos. The birth of TechNova Foost (TNF) stems from a disruptive understanding:

Only when the elements of technological innovation—computing power, intelligence, and capital—are enabled to flow at the atomic level through cryptographic protocols can a technological revolution truly bridge the gap between the laboratory and the marketplace.

TNF builds the first tokenized resource coordination layer for Frontier Tech

- Martificial Intelligence

This is not only an innovation in technical architecture, but also a paradigm revolution in scientific research and production relations.



# Table of Contents

1. Project Background
2. Technical Architecture
3. Token Economic Model
4. Core Applications
5. Team and Advisors
6. Development Roadmap
7. Risk and Compliance
18





### 1. PROJECT BACKGROUND



### 1.1 Opportunities and Challenges

Currently, artificial intelligence, blockchain, cloud computing, and the Internet of Things (AIBC) are reshaping human society at an exponential rate. According to the Gartner 2025 report:

- Global AI computing power demand is growing at an annual rate of 138%.
- The blockchain technology market is expected to exceed \$1.5 trillion
- More than 75% of enterprises will rely on hybrid cloud architectures

However, behind the explosive growth of technology lies three structural contradictions:

### **R&D** funding gap

67% of labs terminate projects due to lack of funding (Nature 2024)



Progress in key areas such as quantum computing lags behind by 3-5 years

### Fragmentation of computing resources

Global idle computing power exceeds 460 EFLOPS (≈ 50,000 A100 GPUs)



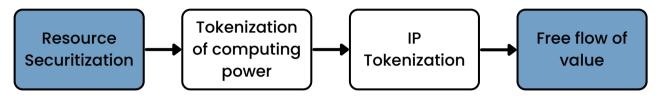
Al training costs remain high (over \$5 million for a single model)

### Technology transfer chain broken

The commercialization rate of scientific research results is only 12.3% (WIPO 2025)



Innovators only receive <5% of market returns




### 1. PROJECT BACKGROUND

### BACKGROUND O TackNown Facette Ochstica

### 1.3 TechNova Foost's Solution

The existing traditional system cannot solve the current dilemma. TNF reconstructs the paradigm of technology resource flow through the "trinity" tokenization protocol:



### Core innovation architecture:

### Decentralized Resource Market (DeRM)

- Converts idle computing power (university/enterprise servers) into tradable assets on the blockchain.
- Uses the PoRA (Proof of Resource Allocation) mechanism to verify resource authenticity.
- Result: Reduces computing power costs by 52% (compared to AWS EC2 P4d instances).

### Closed-loop system for scientific research value

- Research results → Soulbound NFT ownership → Crowdfunding → Automatic profit distribution
- Smart contract enforcement: Researchers 65% + Investors 25% + Ecosystem Fund 10%
- Case study: ETH Zurich AI drug discovery project reduces conversion time to 4.3 months

### Tokenized Incentive Engine

- Developers contribute code/data → receive TNF rewards → redeem them for computing power or technical services
- Investors hold TNF → enjoy priority investment in early-stage projects + share in ecosystem profits



### 2.1 Layered Architecture



Base layer: trust infrastructure

### **Blockchain Network:**

• Built on Ethereum, using Polygon CDK for Layer 2 scaling

### **Asset digitization:**

- Resource assetization: Converting GPU/CPU computing power into tradable units on the blockchain.
- IP tokenization: Generating an unalterable digital fingerprint for scientific research results.

### Cross-chain interoperability:

• Integrate LayerZero protocol to support multi-chain asset settlement



### Protocol layer: core engine

### Proof of Resource System (PoRA):

- Zero-knowledge proof technology verifies computing power in real time.
- Dynamic pricing model automatically adjusts costs based on supply and demand.
- Supports heterogeneous hardware resource scheduling.

### Scientific Research Tokenization Protocol:

- Intellectual property division: Researchers retain ownership, while investors retain the right to profit.
- Smart account splitting mechanism: Commercialization profits are automatically distributed according to a pre-set ratio.

### Governance Framework:

- The voting custody model (veTNF) empowers long-term token holders with decision-making power.
- Governance covers fund allocation, fee adjustments, and more.



### 2.1 Layered Architecture

### Application layer: user interface

| Product Module                                  | Essential Attributes                                                             | Key Performance<br>Indicators         |
|-------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------|
| Scientific research<br>crowdfunding<br>platform | Lab project presentation,<br>community voting, and<br>blockchain fundraising     | Average fundraising<br>cycle: 11 days |
| Computational power exchange market             | Real-time resource<br>allocation, task scheduling,<br>and payment reconciliation | 52% reduced cost<br>compared to AWS   |
| Developer Portal                                | API integration, sandbox environment, tool library                               | Supports over 50 Al<br>frameworks     |



### **Extension layer: ecological connection**

### Cross-chain transaction hub:

• Polkadot/Cosmos ecosystem aims to achieve interoperability by 2026

### **Oracle Network:**

Integrate Chainlink to provide real-time technology data feeds





### 2.2 Detailed explanation of core mechanism



### **PoRA Resource Verification Mechanism**

Adopt a three-stage workflow:

- Registration and authentication: Resource providers submit hardware digital fingerprints
- Task Verification: Generate verifiable computational proofs in real time
- On-chain confirmation: rewards are issued after the verification node network reaches consensus
- Fraud-resistant design: Combining hardware fingerprinting and behavioral analysis to detect counterfeiting
- Latency control: End-to-end verification in less than 3.2 seconds



### Scientific research value capture system

Four-step value transfer:

- Research output produces on-chain digital fingerprints.
- Minting semi-fungible tokens (SFTs) to encapsulate intellectual property
- Establish intelligent account segmentation guidelines (researchers/investors/ecosystem)
- Commercialization revenue is automatically allocated to wallets.

Case: ETH Zurich project achieves 4.3-month conversion cycle

### 2.3 Security Architecture



### **Smart Contract Protection**

- Audited by CertiK and OpenZeppelin
- Formal verification covers 100% of the core logic



### **Data security**

- Zero-knowledge proofs protect sensitive computing tasks
- Sharded and encrypted storage of scientific research data



### System resilience

- 99.99% availability guarantee (based on L2 redundant nodes)
- \$5 million bug bounty program

### 2.4 Performance Benchmarks

| Capability<br>Spectrum                           | TNF Performance                     | Conventional solution                          |
|--------------------------------------------------|-------------------------------------|------------------------------------------------|
| Transaction<br>throughput                        | 2,500+ TPS (Layer 2<br>environment) | Ethereum mainnet 15<br>transactions per second |
| Verification<br>efficiency of<br>computing power | < 3.2 seconds/task                  | Centralized audit exceeding 60 seconds         |
| Cross-border<br>transaction velocity             | Accomplished in 2 minutes           | Banking system 3-5<br>business days            |
| Energy usage                                     | 0.02 kWh per 10,000<br>transactions | Bitcoin 950 kWh per<br>10,000 transactions     |



# 3. TOKEN ECONOMIC MODEL

### 3.1 Basic Token Parameters and Functions

| •  |   |   |
|----|---|---|
|    |   |   |
|    |   |   |
| -4 |   | 4 |
| 4  | • |   |
|    | 4 |   |

### Basic parameters

| property                   | parameter                    |  |
|----------------------------|------------------------------|--|
| Token complete designation | TechNova Foods               |  |
| Token Symbol               | TNF                          |  |
| Blockchain ecosystem       | Ethereum ERC-20 Token        |  |
| Total Supply               | 1 billion (non-inflationary) |  |
| Accuracy                   | 18 decimals                  |  |
| Cross-chain compatibility  | LayerZero Standard           |  |



### **Core Functions**

| Functional<br>aspect         | Implementation Scenario                                                  | Economic utility                            |
|------------------------------|--------------------------------------------------------------------------|---------------------------------------------|
| Payment method               | Acquire computational resources/technical services/research crowdfunding | Establishing<br>fundamental<br>requirements |
| Governance<br>Qualifications | Voting to determine the distribution of scientific research funding      | Provide long-term investment value.         |
| Incentive<br>Mechanism       | Recognize and compensate resource contributors and developers.           | Enhancing<br>ecological<br>productivity     |
| Store of Value               | Deflationary model with profit repurchase mechanism                      | Promoting price stability                   |



## 3. TOKEN ECONOMIC MODEL

### 3.2 Token Allocation Plan



| project                             | Proportion | Total       | Release mechanism                                            |
|-------------------------------------|------------|-------------|--------------------------------------------------------------|
| Public and Private<br>Token Sale    | 40%        | 400 million | Locked for 6 months,<br>gradually released over 12<br>months |
| Team Incentives                     | 20%        | 200 million | Linear release over 3 years (quarterly)                      |
| Research Grant                      | 15%        | 150 million | DAO releases through project voting                          |
| Strategic<br>Collaboration          | 15%        | 150 million | Disbursement in phases<br>contingent upon KPI<br>attainment. |
| Marketing and community initiatives | 10%        | 100 million | Dynamic airdrop and liquidity mining                         |



### 3. TOKEN ECONOMIC MODEL

### 3.3 Core Economic Mechanism



### **Deflation engine**

- Fee Burn: 20% of computing power transaction/technical service fees will be permanently burned (estimated annualized burn rate: 120 million TNF).
- Buyback Burn: 15% of ecosystem partner profits will be used for market buyback and burn.



### Hash power pricing anchor

- Baseline formula: 1 TNF = 10 GPU compute hours (based on NVIDIA A100).
- Dynamic Adjustment: When the demand index exceeds 1.2, the hourly TNF consumption decreases (to stimulate resource supply).

### 3.4 Supply and Demand Control Model

| Scenario                         | Regulatory frameworks                                                     | Target Outcome                              |
|----------------------------------|---------------------------------------------------------------------------|---------------------------------------------|
| Inadequate short-<br>term demand | Enhanced liquidity mining APY<br>(up to 120%)                             | Encourage coin retention and transactions.  |
| Prolonged oversupply             | Accelerate the fee reduction ratio (set to 30%)                           | Enhance token<br>scarcity                   |
| Ecological<br>development phase  | Release strategic collaboration reserves to attract premier institutions. | Broaden<br>application<br>contexts          |
| Severe market fluctuations       | Activate team reserves to stabilize the coin price (maximum limit 5%).    | Sustaining<br>hashrate pricing<br>benchmark |



### 4. CORE APPLICATIONS



### 4.1 Scientific Research Crowdfunding Platform



### **Operating Mechanism**

### Project incubation stage:

- Research institutions submit technical proposals and budgets
- The platform verifies its qualifications through the academic certification system

### Community governance decisions:

- TNF token holders vote to decide project launches (pass rate >55%)
- Smart contracts automatically escrow funds raised.

### Value distribution closed loop:

- Transform achievements into on-chain intellectual property certificates
- Automatic distribution of commercial profits:

65% will go directly to researchers' wallets

25% will be returned to investors proportionally

10% will be injected into the ecosystem development fund



### **Technological innovation**

- Dynamic equity split: Automatically adjusts profit ratio based on contribution
- Cross-border compliant payments: Supports TNF exchange with over 30 fiat currency channels



### **User Value**

- Fundraising cycle shortened by 83% (average fundraising time of 11 days).
- Minimum participation threshold is \$50 (traditional VC funding is > \$50,000).



### 4. CORE APPLICATIONS

### 4.2 Decentralized Hashrate Market



### **Core Features**

| Functional aspect        | Implementation strategy                                                                   | User advantages                                            |
|--------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------|
| Resource Category        | GPU/CPU/storage/bandwidth integrated transaction                                          | Comprehensive<br>solution for<br>computing<br>requirements |
| Dynamic pricing<br>model | The real-time supply and demand index modifies prices within a fluctuation range of ±35%. | 52% reduced cost<br>compared to AWS                        |
| Task Scheduling          | Intelligently align with the optimal resource node (response <45 seconds)                 | Startup efficiency has increased eightfold.                |
| Fraud prevention system  | Hardware fingerprint<br>authentication combined with a<br>behavioral analysis model       | Service reliability<br>attains 99.98%.                     |



### Performance benchmark

- A100 GPU hourly rental cost: 8.2 (AWS: 17.3)
- Cross-border data transfer cost: 0.001/GB (industry average: 0.08/GB)
- Average daily processing volume: 230,000+ tasks (testnet data)



### **Application Scenario**

- Al model training: Distributed training of large models with tens of billions of parameters
- Scientific computing: Heavy computations such as climate simulation and gene sequencing
- Real-time rendering: Cloud rendering service with cinematic quality



### 4. CORE APPLICATIONS



### 4.3 Developer Center



### Service Matrix

| Module                         | Core Competencies                                                          | Technical<br>Assistance                               |
|--------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------|
| Task execution platform        | Visually coordinate AI and big<br>data tasks.                              | Containerized<br>technology cluster<br>administration |
| Data asset<br>marketplace      | Trade verified datasets and earn a commission.                             | IPFS ownership<br>verification and<br>storage         |
| Contribution incentive program | TNF rewards for contributions to development tools and algorithmic models. | Automated<br>distribution of smart<br>contracts       |



### **Typical workflow**

- Developers submit optimized algorithms
- The platform verifies algorithm performance
- Users invoke the algorithm to execute tasks
- Smart contracts automatically settle profits:

70% goes to developers

30% goes to the ecosystem fund



### **Value Highlights**

- Pre-integrated with over 50 mainstream AI frameworks
- Developers earn an average of \$1,200+ per month (testnet data)
- Algorithm reuse improves model development efficiency by 40%



# 5. TEAM AND ADVISORS

### **Core Management Team**



### Dr. Alex Morgan

### Founder and CEO

- PhD in Computer Science from MIT
- 10 years of experience in AI and blockchain R&D.

### Sophia Lee

### **CTO**

- Former Google Cloud Principal Engineer
- Expert in distributed systems and smart contracts.





### **Rahul Patel**

### **Chief Economist**

- PhD in Economics from the London School of Economics
- Designed an economic model for a DeFi protocol with over \$3 billion in TVL



### 5. TEAM AND

### **ADVISORS**

### **Advisory Committee**



Prof. Kenji Sat

### Academic Transformation Consultant

- Led TNF's collaboration with 14 leading laboratories in Asia
- Promoted the commercialization of three technology patents.



Elena Rodriguez

### Global Compliance Consultant

- Building a compliance framework covering 35 countries
- Led TNF in obtaining a Swiss VASP license



Dr. James Chen

### Strategic Investment Consultant

- Introducing \$40 million in strategic investment
- Building a collaborative channel between traditional VC and Web3 capital



Dr. Michael Flynn

### Industry Integration Consultant

- Promoting the integration of TNF and Industry 4.0
- Developing the enterprise-level computing power trading market



### 6. DEVELOPMENT ROADMAP

### **Phase 1: Basic Construction**



### 2025 Q4: Laying the foundation for technology

- Completed ERC-20 contract audit with dual certification from CertiK and OpenZeppelin.
- Mainnet launch (Ethereum and Polygon zkEVM)
- · Access to the initial set of five cooperative laboratories

### 2026 Q1: Crowdfunding ecosystem takes off



- Developed the Crowdfunding Platform Beta
- Supporting three primary domains: Al, blockchain, and quantum computing.
- Hosted over 12 research projects, securing a total of \$8 million in funding.

### 2026 Q2: Computing Power Revolution

- The mainnet for the decentralized computing power market has been launched.
- Facilitates real-time bidding transactions (response latency <45 seconds)</li>
- Average daily computing power transaction volume: 500,000 GPU hours.



### 6. DEVELOPMENT ROADMAP

### **Phase 2: Scale Expansion**



2026 Q3: Global Alliance

- Signed contracts with three Tier 1 research institutions (Max Planck Institute/Stanford Linear Accelerator Center, etc.)
- Onboarded enterprise customers (Tata Group's first batch of 150,000 GPU resources)
- Launch of "Hash Power Mining" incentive program (APY 25-45%)
- Multi-language interface support (Korean/Japanese/German/Spanish)
- Goal achieved: user numbers exceeded 500,000, with ≥30 partner laboratories

### 2026 Q4: Cross-chain Ecosystem



- TechNova Foost 2.0 released
- Cross-chain platform for trading scientific and technological achievements (supporting Polkadot/Cosmos/BNB Chain)
- Launched Intellectual Property NFT Exchange
- Federated Learning Computing Power Scheduling Protocol FL-PoRA
- Goal achieved: On-chain IP transaction volume of \$20 million+



### 6. DEVELOPMENT ROADMAP



### **Phase 3: Ecological Domination**



2027 Q1-Q2: Industry Convergence

- TNF Industrial Cloud Platform (Manufacturing/Biomedicine Customized Modules)
- Hybrid cloud partnership agreement with AWS
- EU MiCA full compliance certification

### 2027 Q3-Q4: Decentralized Governance



- DAO 3.0 Upgrade
- Build a cross-chain verification network for scientific research data
- Access to 1,000+ academic journal data sources

### 2028+: Sustainable Ecology

- Carbon Neutrality Plan
- 100% of computing power uses renewable energy
- Carbon credits on-chain trading system



### 7. RISK AND COMPLIANCE



### 7.1 Systemic Risk Disclosure



### Technical risks

Smart contract vulnerabilities: These could lead to fund loss or protocol failure, with a low probability (5%) but a high potential risk (9/10).

Cross-chain interoperability failures: These could lead to ecosystem fragmentation and liquidity dispersion, with a medium probability (15%) and a medium risk (7/10).

PoRA verification delays: These could impact computing power transaction efficiency, with a low probability (8%) and a medium risk (6/10).



### Market risk

Token price volatility: Extreme scenarios (e.g., BTC daily fluctuations exceeding 30%) could disrupt the hashrate pricing anchor.

Competitor squeeze: If similar products like AGIX/FET are launched, market share could be lost by over 20%.

Liquidity depletion: Market maker withdrawals coupled with a bear market could lead to transaction slippage exceeding 15%.



### **Operational risks**

Key personnel risk: Core team turnover could delay roadmap execution.

Resource fraud: The historical incidence of counterfeiting hashrate to defraud rewards is 0.7%.

Regulatory disruptions: Shifts in major market policies (e.g., new US SEC regulations).



### 7. RISK AND COMPLIANCE



### 7.2 Active Risk Control Mechanism



### **Technical risk mitigation**

Smart contracts undergo triple auditing (CertiK+OpenZeppelin+Halborn), supported by a \$5 million bug bounty program.

The cross-chain system incorporates a circuit breaker mechanism: automatic failover in the event of a single chain failure, and daily public disclosure of proof of 1:1 on-chain asset reserves.



### Market stabilization measures

Dynamic Burn Accelerator: When the weekly price drop of TNF exceeds 25%, the fee burn rate increases to 30%.

Strategic Reserve Intervention: When liquidity depth is less than \$10 million, \$5 million in stablecoins will be injected.

Hashrate Price Stabilization Fund: When the peg deviation rate exceeds 15%, a market buyback will be initiated, maintaining a ratio of 1 TNF = 10 GPU hours.



### Operation guarantee system

Core positions are insured with \$20 million in key person insurance (underwritten by Lloyd's) and signed a three-year non-compete agreement.

The anti-fraud system utilizes dual-factor authentication using hardware fingerprint and behavioral analysis, and requires a mandatory 5,000 TNF security deposit.



### 7. RISK AND COMPLIANCE



### 7.3 Compliance Framework



### Global compliance layout

Switzerland: Holds a VASP license issued by FINMA

Singapore: Receives a MAS Payment Services License Exemption

**UAE: Receives ADGM Provisional License** 

EU: In the MiCA transitional compliance filing phase



### Core compliance measures

KYC/AML system tiered control:

- Tier 1 (<\$1,000): Mobile phone number verification
- Tier 2 (<\$50,000): ID verification + facial recognition
- Tier 3 (>\$50,000): Proof of source of funds + manual review

Integrates Chainalysis and Elliptic on-chain monitoring tools.

The tax module supports automatic reporting for over 40 countries, withholding 30% capital gains tax for US users.

### 7.4 Data Privacy and Security

Data flows through front-end encryption, zero-knowledge proof processing, and IPFS shard storage, ensuring full auditability.

EU data is stored in a local node in Frankfurt, and scientific research data is anonymized with k≥5.

Users enjoy one-click deletion (within 72 hours) and data portability (supporting JSON/CSV export).